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ABSTRACT
Hosts connected to the Internet continue to suffer attacks with high
frequency. The use of an intrusion detector allows potential threats
to be flagged. When an alarm is raised, preventive action can be
taken. A primary goal of such action is to assure the securityof the
data stored in the system. If this operation is effected manually, the
delay between the alarm and the response may be enough for an
intruder to cause significant damage.

The alternative proposed in this paper is to provide a response prim-
itive for intrusion detectors to utilize in automating the response.
We describe RICE, a modification to the Java file subsystem that
provides such functionality for data that is deemed to be threatened
by an attack. If it is activated when an intrusion appears likely to
succeed, it guarantees the confidentiality, integrity and availability
of the protected data even after a system is compromised.

In particular, RICE allows cryptographic encapsulation ofdata to
be reduced to simple key deletion so that it can be effected rapidly.
Further, it uses digitally signed hashes of file deltas to allow un-
tainted data to be distinguished from the rest. Finally, filedeltas
are replicated at a remote node to ensure that changes made byan
attacker can be undone using the remote replicas.

1. INTRODUCTION
Vulnerabilities in deployed software continue to be discovered and
exploited by attackers. If possible, the error in design, implemen-
tation or configuration that results in a weakness ought to bead-
dressed directly. However, in many environments, users need to
install, manage and continue to use software that may introduce the
vulnerabilities. Here alternative preventive measures must be uti-
lized, such as firewalls and intrusion detection systems. These tools
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allow an extra level of defense to be introduced to prevent exposure
of the weaknesses that may exist in the system.

Efforts have been made to utilize information about the attack to
take precautionary measures automatically, such as terminating pro-
cesses or network connections. These approaches typicallyaim to
cut off an attacker’s access to the execution environment. The last
line of defence is protecting the information stored itself. This is the
focus of this paper. By allowing an intrusion detector to interface
directly with the storage system through an exposed programming
interface, we show how the cryptographic and replication responses
needed to ensure the security of the data can be automated.

Implementing runtime protection of data imposes an overhead, how-
ever. If the data’s security is not critical, the impact on performance
may not warrant the changes, while in certain applications it clearly
will matter. For example, in the context of financial systems, a
breach of confidentiality, integrity or continued availability of the
data after an attack can be catastrophic. In such cases the tradeoff
is weighted in favor of instituting additional protective measures.

RICE is implemented as a modification of the Java Runtime Envi-
ronment. It provides intrusion detection applications with a sim-
ple programming interface to cryptographically disable (and re-
enable with manual authentication) read access to subsets of the
data stored in the filesystem. Using authenticated hashes ofchanges
to files, it allows unauthorized writes to be cryptographically de-
tected. Finally, it utilizes authenticated, encrypted replication of
deltas. This allows the changes made by an attacker to be undone.

RICE’s efficacy is demonstrated through its use with a simpleintru-
sion detector (modeled after Stat [11]) which leverages itscapabil-
ities to automatically limit the consequences of imminent attacks.
The overhead imposed by the cryptographic operations is also ex-
amined.

2. MOTIVATION
Current intrusion detection applications have limited response op-
tions. They typically raise an alarm when an intrusion has been
detected. The more advanced ones can tear down network connec-
tions and kill processes. They do not have a means of protecting
the data on the system. In particular, the response is invoked after
an intrusion is detected, at which point it may be too late to make
any guarantees about the security of the system.



We instead consider the case where the intrusion detector can take
proactive protective action before the intrusion completes. This is
when a partial match to an intrusion signature has been detected.
In this context, tearing down network connections and killing pro-
cesses on a host are not viable options since they are not reversible
and because there will be high false positive rates even if consserva-
tive thresholds are used for what is considered to be a partial match.
However, protecting the data (using cryptography) at the expense
of its accessibility is a reversible operation. While this does irre-
versibly alter the execution path of an application (which is unable
to access the data that it needs), this can be compensated forby pro-
grammatically exposing this information and allowing applications
to respond to this exceptional condition.

3. GOALS
We outline below the envisioned goals of a storage system augmen-
tation built for intrusion response. We also describe the approach
we take to achieving the goals.

Guarantee Security
Data security has three aspects - confidentiality, integrity and avail-
ability. If the intrusion response primitives are utilizedas designed,
they should be able to ensure that all three aspects of the data are
maintained. Since an attacker may achieve complete controlof the
system, we can not rely on the operating system after an intrusion
has occurred. This necessitates the use of cryptography to guaran-
tee confidentiality and to verify integrity. In addition, toensure the
availability of data that may be deleted or otherwise modified, the
data must be replicated at a remote node.

Reduce Mean Time To Response
If an intrusion detector is limited to raising an alarm, the data re-
mains exposed to attack for a significant period until a manual re-
sponse can be invoked. Instead the storage subsystem shouldallow
an intrusion detector to directly interact with it to invokethe req-
uisite response. We achieve this by providing a simple program-
ming interface by which the intrusion detector can request partic-
ular groups of data objects to be considered at risk. Thereafter, it
becomes the storage system’s responsibility. Since this isa com-
pletely automated event, the mean time to response can be reduced
from minutes or hours to seconds.

Compartmentalize the Impact
Usability of a storage system response primitive can be enhanced
significantly by limiting its adverse impact on the parts of the sys-
tem that are not threatened. To achieve this, data is dividedinto
groups (orthogonal to the access control groups in use) thatare
likely to be affected by particular intrusions. When protective mea-
sures are instituted, they should only affect the groups containing
the targets of a current attack. This allows the rest of the system to
continue functioning unhindered, improving system usability and
reducing its vulnerability to denials of service created bythe trig-
gering of the protective measures.

Simplify Recovery
Adding security often reduces convenience. In the current context,
once a set of data has been protected, it should no longer be read-
able, writes to it should not be authenticated and replicas should
be detected as untrusted. Once a threat is deemed to have passed,
these changes must be undone. There are two aspects to this. The
first is what must occur at runtime, which is the removal of the
cryptographic protections.

Since the cryptographic keys needed to remove the protections would
have been deleted to prevent an attacker from being able to access
them, they must be recovered from a keystore. Access to the key-
store must be password protected for the same reason and thusne-
cessitates manual authentication by the system’s administrator or
user (as specified by policy). To minimize the inconveniencethis
imposes, when a protection group is no longer deemed to be under
threat, instead of unprotecting it immediately, it is addedto a pool
of candidates for unprotection. Only when a file from one of these
groups is accessed does the keystore get accessed. At this point all
the elements of the pool have their protection removed. Thisef-
fectively amortizes the authentication over a number of recoveries,
diminishing the inconvenience it causes.

Make Undoability Usable
The other aspect of undoing changes is what must be done offline if
an intrusion occurred. This is the utilization of the remotereplicas
to reconstruct the filesystem to a point in time where it had not been
subverted. The usability of the recovered state is dependent on the
semantics of write operations. If there are no transactional guaran-
tees, files may be left with multiple pieces dating to different times.
Such data is likely to be of little utility. The approach we use is to
allow recovery to be guaranteed at the granularity of transactions
defined by the opening and closing of a file for writing.

4. BACKGROUND
Several projects have used cryptography to control data access at
file granularity. Each has a difference from what we propose which
makes it unsuitable for application in the context we describe.

Cryptographic File System [1], Transparent CryptographicFile Sys-
tem [2], and Cryptfs [13] use only symmetric key cryptography.
Guaranteeing a file’s integrity requires a means to check that it has
only been modified by an authorized party. If the key used to verify
the hash of the file was of symmetric cipher then it could be used to
modify the hash as well. An asymmetric cipher is required to allow
verification of integrity without allowing changes. Framedin terms
of file operations, we need a asymmetric cipher to be able to grant
read access without write access.

Secure File System [9] and Secure File System - Read Only [4]
use asymmetric ciphers to provide authentication but not confiden-
tiality. Encrypting File System [10] uses an asymmetric cipher for
authenticated access along with a symmetric cipher for confiden-
tiality. It does not sign hashes on writes which are verified on reads,
so it is unable to guarantee integrity.

Secure File System [6] and Cepheus [3] target distributed environ-
ments and rely on the network for gaining access to keys. Apart
from the latency introduced by the network access, this introduces
the weakness of allowing an attacker to cut off read and writeac-
cess to files by flooding the server port used to listen for requests
for keys.

Finally, none of these systems aim to address the issue of avail-
ability of data after a successful attack. RICE addresses this by
computing the changes made to files and storing them on a differ-
ent host to allow file reconstruction should the original no longer
be available after an intrusion. Additionally, RICE provides an in-
terface for key manipulation to allow cryptographic guarantees to
be added to read/write access denials with minimal overhead.
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Figure 1: RICE’s augmentation of the storage subsystem al-
lows transparent data encryption, integrity hash checkingand
replication for threatened data. It exposes a programming in-
terface to allow an intrusion detector to activate the protections
only when needed to minimize its impact on system usability.

5. OVERVIEW
Computing systems are designed to manipulate data. It is this data
whose security is paramount and the final target of protection. Our
goal therefore is to assure that the data’s confidentiality,integrity
and availability is maintained, even after the system is penetrated.
We aim to achieve this by providing a response primitive thatcan be
invoked by an intrusion detection system when it detects an attack
that is likely to succeed. Invoking the primitive must ensure that the
data is encrypted to guarantee confidentiality, a hash of it is signed
to allow its integrity to be subsequently verified, and it is replicated
at another node so that it is available even if the local copy is lost.

Effecting the above mentioned operations on a large data setis a
computationally intensive task. The latency of the operation would
be too high if it were to be completely executed at invocationtime.
Our strategy to address this issue is to minimize the computation
needed in response to a likely intrusion. This is done by main-
taining data in a protected state until an application needsaccess
to it. At this point, transparent to the application, it is exposed as
described in Section 7.4. When it is no longer used by any applica-
tion, it is transparently protected once again, as outlinedin Section
7.5. An overview of the scheme can be seen in Figure 1.

This process imposes an overhead whenever data is used, but it has
the benefit of allowing data to be rapidly protected, by simply delet-
ing exposed copies of the data and the cryptographic key material
needed for the transparent manipulations, as explained in Section
7.6. Access to the data can be re-enabled by manual authentication,
as outlined in Section 7.7. The scheme uses mechanisms similar to
a cryptographic filesystem. The differences are highlighted in Sec-
tion 4.

We describe how RICE is utilized in conjunction with a prototype

intrusion response engine in Section 8.1. The overhead it intro-
duces during the normal operation of the system is evaluatedin
Section 8.2.

6. DESIGN
6.1 Protection Groups
Protection groupsallow predefined subsets of the data to be cryp-
tographically safeguarded atomically. We use them for several rea-
sons. Each group has a public key pair associated with it. Their use
is elucidated in Section 6.2.

The safeguards are instituted in response to threats. Each threat
has associated with it a set of files that may be affected by it.The
grouping is orthogonal to any operating system attributes.If an
intrusion detector determines the need to take precautionsagainst
a threat, one course of action is to safeguard the relevant files. A
protection group serves as the data structure used to track asubset
of files that are always affected together, regardless of what the
current threat may be. Hence, a single threat may affect a number
of protection groups.

Since protection groups are defined independent of any otherfile
attributes, they can be defined as arbitrary sets. This allows files
that are unlikely to be affected by a threat not be safeguarded. The
property also ensures that subsystems and applications that do not
utilize data that is threatened can continue operating normally.

When a threat appears and a set of files must be protected, it isim-
perative that the safeguards be instituted in as short a timeperiod
as possible. The longer it takes, the more damage can be effected
in the interim. The use of protection groups allows the system to
perform a small number of key deletion operations on the groups’
meta-data, rather than a large number of operations on all the con-
stituent files.

6.2 Assurance
When the system is under threat of penetration, data must be safe-
guarded. The aim is to guarantee three properties for the data -
confidentiality, integrity and availability - that will hold even after
a successful attack.

6.2.1 Confidentiality
Each file that is part of a protection group is kept encrypted in a
symmetric cipher with its own unique key, which serves as acryp-
tographic capability. This capability in turn is kept encrypted with
the group’s public key. If an attacker is likely to compromise the
system in a manner that threatens the protection group of thefile,
the private key of the group will be deleted. This will prevent the
file’s cryptographic capability from being decrypted. Without the
file’s capability accessible, the file’s confidentiality is guaranteed.

When an application seeks to use the file and its protection group
has not been threatened, then the runtime environment is able to
transparently enable access to the file by retrieving its cryptographic
capability (which can be unsealed with the extant protection group
private key), decrypting the file and then opening the temporary
decrypted version. When the application is done with the file, it is
re-encrypted and the temporary version deleted from the system.

If a file was still in use at the time of the penetration, along with the
deletion of the group’s private key, the temporary decrypted version



of the file will be deleted. Any changes made since it was last
opened would be lost, but its confidentiality would be maintained.

6.2.2 Integrity
In order to be able to verify the integrity of a file, a cryptographic
hash of the contents of the file is maintained with the file’s meta-
data. To prevent the hash from being manipulated without autho-
rization, it is always sealed with the file’s protection group’s public
key before it is stored. If the file is changed after being opened,
then the hash of the new version must be computed, sealed with
the protection group’s public key, and stored in the file’s meta-data.
When a file is opened, either for reading or writing, the file’shash
is computed and compared to the one stored in the meta-data (after
unsealing the stored hash using the protection group’s private key).
If the hashes match, the file’s integrity is deemed to have been ver-
ified.

If an intrusion detector determines that a protection groupis threat-
ened, it deletes the group’s public key. Once this has been done, any
changes that an attacker makes to a file will be detectable. Since
the protection group’s public key is no longer present, it isnot pos-
sible to seal the hash of the changed version of the file. When the
file is accessed subsequently, the fact that the computed hash does
not match the stored hash (after it has been unsealed with thepro-
tection group’s private key), signals that the file’s integrity has been
compromised.

If a file was in use when an intrusion occurs, the integrity of any
changes that were made since the file was opened will not be recorded.
This is due to the fact that the decrypted version of the file will be
deleted without re-encrypting it (since that would introduce an un-
acceptable delay which an attacker may be able to exploit), and
hence since the changes will be lost there is no question of veri-
fying their integrity. If the attacker does not alter the file, it will
remain in the state that it was before the last time it was usedand
its integrity can be verified. If the attacker alters it, the integrity
check will fail.

6.2.3 Availability
The goal of guaranteeing the availability of data in the faceof an
attack is usually managed by instituting a regular backup regimen.
When a system penetration is detected, data from a backup prior
to the intrusion is extracted and used to replace the taintedversion.
This is an inherently synchronous process, bringing with ita nec-
essary tradeoff. Increasing the frequency of the backup decreases
temporal extent of data loss. However, it also imposes an increased
overhead. These two factors must be balanced. In addition, either
all the files are backed up or the entire filesystem must be inspected
to search for files that have changed. This fact places a lowerbound
on the time to effect a single backup. The bound grows with thesize
of the filesystem, a quantity that continues to increase withtime.

We address the issue through the use of an asynchronous approach.
We incorporate functionality in the runtime environment which copies
changes made in files to a remote node. If an attack is subsequently
deemed to have occurred, the prior state of any file that has been
changed can be computed using the sequence of changes that have
been copied over.

When a file is accessed, a copy of the original version is main-
tained. After the file is closed, the runtime determines if the file has
been written to. If it has, a delta is computed between the original
version and the new version. A hash of the delta is computed and

sealed with the file’s protection group’s public key. The delta it-
self is encrypted with the file’s cryptographic capability.Thus, the
modifications are provided the same confidentiality and integrity
guarantees as the original file. The sealed hash and the deltaare
placed in a temporary location on the disk. A separate process syn-
chronizes the deltas with a remote node.

6.3 Virtual Layer
In order to implement the changes needed to provide the data se-
curity guarantees in a manner that is transparent to extant applica-
tions, it was necessary to introduce them in the operating system
itself. There are two possible approaches. The first option is to
modify the filesystem itself, altering its data structures to include
the new meta-data needed, along with the cryptographic transfor-
mations that use the auxiliary protection information. Thealterna-
tive approach is to introduce the functionality as avirtual layerover
an existing filesystem. When runtime environment calls are made
to operate on files, they can be intercepted and the new transforma-
tions effected if required, making calls to the native filesystem as
needed.

With the latter approach, there is a further choice of where to store
the security related meta-data. One option is store both themeta-
data and the actual content in the native filesystem version of the
file. The other option is to maintain the meta-data separately. We
opted to use the virtual layer approach with the meta-data stored
separately. Described below are some of the factors that were in-
volved in making the choice.

Using either a different native filesystem format or a virtual layer
with the meta-data stored with the data within a single file inthe
native filesystem has several limitations. It will not bebackward-
compatiblewith any extant data stored in a currently deployed filesys-
tem due to differing formats. All that data will have to be copied
over. The functionality provided by anyattributesstored in the
meta-data of the old filesystem will either be lost or have to be re-
implemented. The new filesystem will not be inter-operable with
any other runtime system that does not have support for the new file
format. Additionally, the resulting system will not beextensible-
that is if new attributes are to be added to the meta-data of each file,
they can not be inserted for each file without rewriting the entire
filesystem.

Maintaining the meta-data separately brings with it the advantage
of being able to add new fields for existent files with little cost.
For example, to add functionality to retrieve a file’s cryptographic
capability dynamically from a remote capability server if it is not
present, new fields would be needed to store the capability server’s
location. The cost to introduce the field into the meta-data stored
separately would be proportional to writing out all the meta-data,
and would not incur the cost of having to write out all the data
stored in the filesystem as well.

Using a virtual layer approach with the meta-data stored separately
from the files has the disadvantage that the native filesystem’s syn-
chronization of the meta-data can not be leveraged. However, this
is addressed by limiting the use of shared data structures that must
be locked - they are used only when a file is opened and closed,
not when it is read or written. Therefore the overhead introduced is
minimal.

The approach of storing the meta-data with the data has the ad-
vantage of allowing files to be transported from one filesystem to



another, even across different hosts, and yet retain their protection
profile so that they may potentially be accessed independently of
the resource in which they reside. Since we are focused on a sin-
gle host operating environment, this did not provide a significant
advantage.

6.4 Protection Granularity
Another choice that must be made is the granularity at which cryp-
tographic operations are to be performed. Cryptographic file sys-
tem projects, such as those described in Section 4, either encrypt
or decrypt an entire file or just a block at a time. Operating atfile
granularity results in a performance impact when opening and clos-
ing a file, while operating at block granularity introduces overhead
for read and write operations.

6.4.1 Transaction Contract
Once an intrusion has been detected, it is necessary to use the se-
quence of replicated deltas to undo the changes made by the at-
tacker so as to return the system to an untainted state. If thecryp-
tographic operations (and implicitly the contract of the transaction
between the application and the storage subsystem) were at block
granularity, then the semantics of the recovered state would be un-
clear. To see why this is true, consider the following case. Assume
that when a block is no longer being written to, the system will re-
encrypt it and commit the changes to a remote node. Now consider
the implications when an application does a write which spans mul-
tiple blocks, some of which have been re-encrypted and replicated
at the point in time that a likely intrusion is detected. The response
subsystem will delete the relevant keys, making the writes to the
remaining blocks unauthenticated. After recovery, the filewill con-
tain some blocks containing part of the write operation and some
blocks reflecting the earlier state of the file. This leaves the file in
an unusable state. It is preferable to be able to ensure that either
the entire write can be authentically committed or the file can be
reverted to the prior state.

6.4.2 Common Case
In addition to the issue of the semantics, we consider the implica-
tion for performance. Reading and writing are far more common
operations in a typical workload. As a result, it is reasonable to
optimize this case at the expense of the case of opening and closing
a file. We therefore opt to encrypt, decrypt and compute hashes at
file granularity. Below we further describe the tradeoff involved in
the choice.

Performing cryptographic operations at file granularity results in
the fact that opening and closing a file, which is anO(1) operation
in a traditional filesystem, becomes anO(n) operation, wheren
is the length of the file. This is because the entire file must be
decrypted and its integrity verified when opening the file. Similarly,
the file must be encrypted and its hash computed when closing the
file. If blocks of sizeb are used and cryptographic operations are
performed at block granularity, then open and close operations have
O(b) = O(1) cost. One method to address this issue is to fix an
upper limit on the size of file that may be protected, sayk. The
complexity of opening and closing a file is thenO(k) = O(1) if
thek is a constant.

The advantage of performing operations at file granularity mani-
fests when files are being read and written. Operating at block gran-
ularity introduces the latency of decryption and encryption during
reads and writes. If operations are performed at file granularity,

an unencrypted version is used during read and write operations so
there is no cryptographic overhead. When the workload used in-
volves concurrent accesses of files by multiple processes orthere
exists significant locality of reference, then the fact thatreads and
writes have no extra cost in this approach results in a performance
advantage over the block granularity approach. If a significant por-
tion of the file is used, then operating at file granularity approx-
imates the use of an optimal pre-caching policy that has perfect
lookahead, coupled with an infinite size cache.

If the following conditions areall true for the files in the workload,
then using block granularity would have been preferable - a very
small fraction of each file is used (since operating on the entire file
would add significant overhead), the file is not reused (sinceblock
granularity reuse is much more expensive as cryptographic opera-
tions must be effected on each use), the file is not used by concur-
rent processes (since there is no extra cryptographic cost added for
all processes after the first that use the file).

7. IMPLEMENTATION
We now describe the organization of the meta-data used, the tool
Group Managerused to manipulate it manually, and the runtime
subsystemCapability Managerthat transparently manages it for
applications.

7.1 Meta-data
Each file that is protected by RICE has several attributes that are
stored in an instance of theObjectMetaData data structure. These
include:

objectLocation The location of the file in the filesystem at the
time of protection.

objectGroup The protection group to which the file belongs.

instances The number of concurrently open instances of that cur-
rently exist.

decrypted The location of a temporarily unencrypted version (if
one exists) of the file.

pristine The location of a temporary copy of the file in the state
that it was when the file was opened, before any writes oc-
curred. It only exists if a file is currently open and serves as
a baseline against which deltas of the file can be computed.

sealedCapability The cryptographic capability (symmetric key)
used to encrypt the file, wrapped in the public key of the
protection group of which it is a member.

capability The value of the unsealed cryptographic capability, which
is only present while the file is open.

currentCheckpoint A counter used to indicate the position in the
sequence of deltas that are computed each time a file is closed
after changes have been made.

computeDelta The value serves as the equivalent of a dirty bit on a
page. It indicates whether any instance of the file was opened
for writing, in which case a delta must be computed when it
is closed.

sealedHashThe cryptographic hash of the file as it was when it
was last closed, kept sealed in the protection group’s public
key.



idempotency Each instance of an open file has a unique hash as-
sociated with it that is stored in this set.

Each protection group is stored in an instance of theObjectGroup
data structure. Each instance contains the group’s name, its public
key (used to seal the cryptographic capabilities and hashesof files
in the group) and its private key (used for unsealing those capabil-
ities and hashes). In addition it contains a hashtable of pointers to
the meta-data of the group’s members, which is indexed by thefull
path of the member’s location in the filesystem.

Finally, theResourcesdata structure contains two hashtables. The
first is indexed by the names of protection groups, associating the
group name with a pointer to the group’s meta-data, from which
a list of all member files may be extracted. This is used when a
group is to be protected, since each member’s decrypted and pris-
tine copies must be erased if confidentiality is to be guaranteed.
The second hashtable is indexed by the full path of a file. Upon
being queried about a file, it returns the meta-data of the group to
which the file belongs.

7.2 Group Manager
The GroupManager is a tool for the administrator to manually
manage the protection status of files. It performs all operations on
agroups databasewhich stores all the meta-data associated with all
the files of all protection groups. To make changes to this database,
a password is required. By maintaining the meta-data of the virtual
layer in this manner, it is possible to have multiple groups databases
and switch between them to institute a different protectionpolicy.
We describe below the operations that may be performed usingthe
GroupManager.

All operations require a password since they all read or write the
groups database. The password is used to create a symmetric key
which is used for decryption of the groups database when it isbeing
read and encryption when it is being written. The operationsmust
also specify the type of operation by passing amodeparameter to
the GroupManager, and the file in which the groups database is
stored.

7.2.1 Capabilities File
Since the runtime system requires transparent access to themeta-
data, theGroupManager can be use to generate acapabilities file
which is not password protected using anoutputoperation. During
the course of execution, this capabilities file will be manipulated
by the runtime since it needs to update the cryptographic hashes
(used for integrity checks) of files that have been written to. To
allow the groups database to reflect these changes, the content of
a capabilities file can be transferred to a groups database using the
input operation.

7.2.2 Group Listing
For convenience, the groups database can be interrogated with the
list operation. If a specific group name is passed as a parameter,
then the files which are a member of the group (if any) are listed.
Alternatively, if no parameter is passed, then the list of currently
defined protection groups is generated and emitted.

7.2.3 Altering Membership
Finally, a file may be added to a protection group with theaddop-
eration by specifying its current location in the filesystem. If the

file has previously been added, the request will not alter thestate
of the meta-data. Files may not be added to more than one pro-
tection group. Files that would be members of the intersection of
protection groups should be combined into a new, separate protec-
tion group of their own.

If the protection group does not exist, it is dynamically created,
including a pair of public and private keys for sealing and unsealing
its members’ capabilities and hashes. A hash of the plain fileis
computed before encryption and is sealed with the group’s public
key. A new cryptographic capability (symmetric key) is generated
for each file that is added. The file is encrypted with this key,after
which the key is sealed with the group’s public key.

The removeoperation can be used to remove a file from a protec-
tion group of which it is currently a member. The file is decrypted
using its cryptographic capability retrieved by unsealingit with the
group’s private key. Similarly, the file’s integrity is verified by com-
puting its hash and comparing it to the one stored in the meta-data
(after unsealing the hash with the group’s private key). Allassoci-
ated meta-data is then deleted. If the file was the only memberof
the protection group, then the group and its associated meta-data
are also deleted.

7.3 Capability Manager
7.3.1 Platform

We implemented theCapabilityManager as a modification of Sun’s
Java Runtime Environment. The underlying implementation of all
classes that provide an interface to files is through the use of the
java.io.FileInputStream and java.io.FileOutputStream classes.
Our implementation hence instruments these two classes’ construc-
tors andclose()methods. (Version 1.4 of the Java Runtime Envi-
ronment introduced a new subsystem for non-blocking input and
output, which accesses the filesystem through native virtual ma-
chine calls. RICE does not support manipulation of files using the
java.nio subsystem.)

In principle, however, the design of theCapabilityManager sup-
ports the augmentation of multiple classes, not just thejava.io.-
FileInputStream and java.io.FileOutputStream classes. This is
because the only state that is stored in the class which invokes the
CapabilityManager is the name of the file used in the constructor
so that it can be passed back to theCapabilityManager after a file
is closed to allow the file to be re-protected. Hence, adding support
to new classes only requires the addition of a single field to each
and the instrumentation of the constructors andclose()methods.

7.3.2 Initialization and Committal
TheCapabilityManager takes two parameters. The first is the ca-
pabilities file referred to in Section 7.2. All meta-data forthe virtual
layer is stored and manipulated in this file. The second parameter is
a location on disk where deltas are stored temporarily afterthey are
computed for files that are modified by writes. They are transferred
from this location to a remote node by an independent process.

When the runtime environment starts, the first time either a file read
or write operation occurs, an attempt is made to load theCapabili-
tyManager. If either required parameter is not provided or there is
an error, the system will run without theCapabilityManager and
files that are members of protection groups will only be accessi-
ble in the encrypted form. During initialization, the virtual layer is
populated with meta-data read in from the capabilities file.



While the system is operating, if at any point all the files opened
by applications are closed, the meta-data from the virtual layer is
committed to the capabilities file. This choice allows the meta-data
to be committed in a coherent state and assures that it is written out
before the runtime shuts down.

7.4 Opening a File
When an application constructs a class that provides accessto the
filesystem, a call is made to the virtual machine’s nativeopen()
method. We introduce code in the constructors to pass the filename
as a parameter to theCapabilityManager’s unsealFile()method.
TheCapabilityManager inspectsResources’ hashtable of all pro-
tected objects and determines if the file in question is beingman-
aged by RICE. If it is not, it simply returns the same filename.The
virtual machine’s nativeopen()method is invoked with the filename
as it would in the absence of theCapabilityManager.

If the CapabilityManager determines that the file is being man-
aged by RICE, it looks up theObjectMetaData for the file. With
this it is able to check whether this file has been previously opened
either by any executing thread (including the current one).If it has
not been opened, then a check is done to see if the file’s protection
group’s private key is available. If it is, then it is used to decrypt
the file’s cryptographic capability and sealed hash. The capability
is used to decrypt the actual file, whose hash is computed and com-
pared to the unsealed hash. If the hashes do not match the integrity
check is deemed to have failed and is flagged. In addition a pristine
copy of the file is made. The decrypted file is stored in a temporary
location and it is this location that is returned by theCapability-
Manager. If the CapabilityManager found that the file had been
opened, then a decrypted file’s location would already be present
in theObjectMetaData and this would be returned. In either case,
the returned value is used as the parameter when calling the virtual
machine’s nativeopen()method.

Since theCapabilityManager itself uses the filesystem, we intro-
duce a new constructor with an extra parameter. The parameter is
used to determine whether theCapabilityManager will be used
when opening the file. The standard constructor also calls the new
constructor, passing it a value that indicates theCapabilityMan-
ager should be used. This is transparent to applications (unless
they use reflection and depend on the fields stored in the class).

7.5 Closing a File
When an application finishes using a file, it invokes theclose()
method of the class with which it gained access to the file. This may
be java.io.FileInputStream, java.io.FileOutputStream or one of
the classes which in turn use these classes, such asjava.io.FileRe-
ader or java.io.FileWriter , to access files. We modify theclose()
method, allowing the normal operation to complete and then intro-
duce a call to theCapabilityManager’s sealFile()method. Two
parameters are passed, which are the filename and thecomput-
eDeltavalue which signifies whether the file was opened for read-
ing or writing. TheCapabilityManager inspects the relevantRe-
sourceshashtable to check if the file was protected by RICE. If not,
it returns silently.

A count is maintained in each file’sObjectMetaData to keep track
of how many instances of a file have been opened. Each time a file
is opened, the count is increased and each time a file is closed, it
is decreased. If this count reaches zero, no application is currently
using the file. When this occurs, theCapabilityManager checks a
flag to see if any instance of the file had been opened for writing.

If not, then the decrypted version and pristine copy of the file are
both deleted.

If the CapabilityManager found that the file had been opened for
writing, it needs to commit the changes. It must first check tosee
if the file’s protection group’s public key exists. It then computes
the delta of the file as the difference between the pristine copy and
the current state of the unencrypted version. It computes the hash of
both the file as well as the delta and seals each hash with the group’s
public key. The sealed hash of the file is stored in the file’sObject-
MetaData, while the delta and its hash are written out to a location
calculated as a function of the filename, it’scurrentCheckpointand
the parameter passed to theCapabilityManager at initialization.
ThecurrentCheckpointis then incremented.

Each concurrent instance of a file that is opened is associated with
a unique token which is stored in theidempotencyset. When a file
is closed, a check is performed to see if the token passed in asa
parameter is in the idempotency set. If it is not, then this instance
of the file was previously closed and the call is ignored, making
close()an idempotent operation as required by conventional seman-
tics. In addition, unauthorized sealing of the file is prevented since
the sealFile()operation requires that the same token be passed as
a parameter as the one that was passed to the correspondingun-
sealFile()operation that was invoked when opening the file. This
assumes that the choice of the token is cryptographically random.

7.6 Runtime Protection
When the system is running, if an intrusion response engine de-
termines that a group is under threat, it can opt to use RICE to
cryptographically remove either write access or both read and write
access.

To remove write access, it need only delete the protection group’s
public key. Once this is done, files can still be written on thelocal
filesystem, but the hashes of the new files and the deltas computed
can not be sealed with the public key. When a system is investi-
gated after a penetration, the changes that have not been signed can
be deleted, restoring the last signed versions. In this manner, the
filesystem can be restored to a state where all unauthorized writes
are left out.

To remove read access, the response component only needs to in-
voke thedisable()method and delete the private key used to unseal
cryptographic capabilities. Thedisable()method iterates through
the protection group’s member’s meta-data, deleting any unencrypted
and pristine files that are defined. Once this is done, if a penetration
occurs, there is no means (short of brute force key search) togain
access to the protected files (modulo covert channels such asthe
magnetic remanence of data).

7.7 Re-enabling Access
To re-enable access to a group, the response component can call the
enable()method. In this case, the group’s name is added to a set.
When an attempt is made to access any of the files in the set, the
system will attempt to authenticate the user manually at thecon-
sole. If it succeeds all groups in the set will be re-enabled.The use
of protection groups coupled with the process of combining mul-
tiple protection groups’ re-authentication minimizes thenegative
impact on usability.



Figure 2: Attack exploiting an access validation error.

8. EVALUATION
8.1 Security Benefits
RheoStat[5] is a prototype detection and response engine. It uses
a formal risk framework implemented in the moduleRiskManager
to effect automated response on a host. Its model calculatesthe risk
based on the threats, exposure to the threats and consequences of
the threats. Threat levels are estimated using informationabout the
extent to which intrusion signatures have been matched. System
vulnerability is calculated based on the exposure allowed by the
system’s current access control configuration.

RheoStat can manage the risk by reconfiguring the access con-
trol configuration. In the following experiments, it is modified to
manage the risk by invoking RICE’s protective measures. When it
deems a group of files likely to be affected by an intrusion, itin-
vokes RICE’sdisable()command for the relevant group. As can be
seen from the following experiments, the response is rapid,needing
only a few system events for the data protection to be effected.

The NIST ICAT database [7] contains information on over6, 200
vulnerabilities in application and operating system software from
a range of sources. These are primarily classified into sevencate-
gories. Based on the database, we have constructed three attacks,
with each one illustrating the exploitation of a vulnerability from a
different category. In each case, the system component which in-
cludes the vulnerability is a Java servlet that we have created and
installed in the W3C’s Jigsaw web server (version 2.2.2) [8]. We
describe below a scenario that corresponds to each attack, includ-
ing a description of the vulnerability that it exploits, theintrusion
signature used to detect it and the way RheoStat responds. The
global risk tolerance threshold is set at20.

Access Validation Error
An access validation erroris a fault in the implementation of the
access control mechanism. Although the access control has been
configured correctly, it can be bypassed. In our example, theservlet
implements logic to restrict access to certain documents based on
the source IP address. However, if a non-canonical version of the
path is used, the servlet fails to implement the restrictionon the
source IP address. This access control implementation flaw allows
the policy to be violated despite a correct configuration.

When the following sequence of events is detected, an attackthat

Figure 3: Attack exploiting an exceptional condition handling
error.

exploits this vulnerability is deemed to have occurred. First, the
web server accepts a connection to port8001 (the default port that
Jigsaw listens on). Second, it serves the specific HTML document
which includes the form which must be filled to request a file.
Third, the server accepts another connection. Fourth, it executes
the servlet that verifies if the file can be served to the client, based
on its IP address. Fifth, the decision to deny the request is logged.
Sixth, despite the choice to deny the request, the file is served (due
to the non-canonical path not being classified correctly). The events
must all occur within the pre-match timeout of the signature, which
is 1 minute.

In Figure 2, event6 and events8− 12 correspond to this signature.
Events1 − 5 and event7 are matches of other signatures which
cause the global system risk to rise. They occur since the events
in this signature overlap with those of other signatures. After event
12, the risk has risen above20, the threshold of risk tolerance. As
a result, theRiskManager searches for and finds the risk reduc-
tion measure which has the lowest cost-benefit ratio. The measure
it selects is invoke RICE’sdisable()operation on the ’Documents’
object group which is data that is listed as being affected asa conse-
quence of this attack. This causes the risk to drop in event13. The
confidentiality of the files in the ’Documents’ group is maintained.

Exceptional Condition Handling Error
An exceptional condition handling errorcan result when the sys-
tem is left in an exposed state after an unexpected event occurs. It
is due to the failure to explicitly design the system to fall back into
a safe state when unplanned eventualities are realized. In our ex-
ample, when the servlet is authenticating the user, it checks a list
of revoked accounts on another site. If does not receive a response
after multiple queries, it grants access (on the assumptionthat there
is an error in the revocation server’s functioning). The resulting at-
tack is mounted by first flooding the revocation server’s network
connection so as to assure that it can not respond, then utilizing an
expired account to gain access.

When the following sequence of events is detected, an attackthat
exploits this vulnerability is deemed to have occurred. First, the
web server accepts a connection to port8001. Second, it serves
the specific HTML document which includes the form which re-
quests authentication information as well as the desired document.



Third, the server receives another connection. Fourth, it executes
the servlet that checks the authentication information provided. Next,
an attempt is made to contact the revocation server to check that the
credentials have not been revoked. Since the revocation server’s
network connectivity is under attack, the connection to it will time-
out. After a total of three attempts, the check will fail, incorrectly
allowing access instead of denying it. This results in the fifth, sixth
and seventh events being network exceptions, while the eighth is
the completion of the file request. The events must all occur within
the pre-match timeout of the signature, which is2 minutes.

In Figure 3, event2 and events8− 14 correspond to this signature.
Event1 and events3 − 7 are of other signatures. Event14 causes
the risk threshold to be crossed. The system searches for a risk
reduction measure and opts to use RICE todisable()access to the
’Documents’ object group which is data that is listed as being af-
fected as a consequence of this attack. This causes the risk to drop
in event15. Although the attack itself will succeed and the intruder
will gain access to the system, all the data in the ’Documents’ group
will now be secured by RICE. It will not be possible to decryptany
of the files and any changes will not be authenticated.

Race Condition Error
A race condition errorresults due to the system performing a secu-
rity operation in multiple steps, while assuming that the sequence
is being performed atomically. In our example, a servlet allows a
user to create an account by providing a username and password.
The servlet creates a writable copy of the password file in a tem-
porary directory, to which it appends the new account information
before removing write permission and moving the file to the pass-
word file’s usual location. The design assumes the copy, append,
change permission and move operations all occur atomically. An
attacker uses a file upload servlet running on the same host that has
access to the temporary directory, by initiating the creation of a new
account while repeatedly uploading a spurious password fileto the
temporary location. By continuously, repeatedly uploading the file,
when the legitimate one appears it is overwritten by the spurious
one. This can be used to grant greater privileges than they would
have been allowed as a new user having just created an account.

When the following sequence of events is detected, an attackthat
exploits this vulnerability is deemed to have occurred. First, the
web server accepts a connection to port8001. Second, it serves a
specific HTML document that includes a form for checking whether
a username already exists in the system. Third, it receives another
connection. Fourth, it executes the servlet that checks whether the
username is in use. Fifth, the password file is opened for copying
to a temporary location. Sixth, a temporary copy is written out.
Seventh, the HTML document which includes a form for selecting
a username and password is served. Eighth, the server receives a
connection. Ninth, it serves the HTML document which includes
a form for uploading files. Tenth, it receives another connection.
Eleventh, it executes the servlet for uploading a file. Twelfth, the
temporary password file is overwritten by the upload. Thirteenth,
another connection is accepted by the server. Fourteenth, the servlet
for creating a new account is executed. Fifteenth, it appends the
new account to the temporary password file (which has been sub-
verted at this point if the attack has not been interfered with).

In the Figure 4, event5, events8 − 14, event17, and event20,
pertain to this signature. Events1 − 4 and6 − 7 relate to other
signatures. Event15 also pertains to another signature but causes
the risk to exceed the threshold of tolerance. The system responds

Figure 4: Attack exploiting a race condition error.

in event16 by activating a predicate to deny the write permission
for the password file in the uploads directory. Event18 pertains to
another signature but causes the risk to exceed the threshold of tol-
erance. The system responds in event19 by activating a predicate
for the permission which controls whether the file upload servlet
can execute. The predicate activated is a Chinese Wall checkwhich
will subsequently allow access only to other files in the samegroup
as the servlet. Event21 pertains to another signature but causes the
risk to exceed the threshold of tolerance. The system responds in
event22 by activating a predicate for the write permission of the
temporary version of the password file. The predicate activated is
a Chinese Wall check which will subsequently allow access only
to other files in the same group. Since another group has already
been accessed in event21, the write permission for the temporary
version of the password file will subsequently be denied. Since
the risk has not reduced below the threshold of tolerance, another
risk reduction measure is taken in event23 in the form of invok-
ing RICE’s disable()operation on the ’Documents’ object group.
By event24, where the attack attempts to complete, the response
measures in place prevent it from succeeding. In particular, write
access has been disabled for the temporary version of the password
file in the temporary directory where uploads are allowed. Using
RICE, the integrity of the password file is thus maintained.

8.2 Runtime Overhead
In the previous sections we have described the benefits of aug-
menting the runtime with RICE. However, the use of cryptography
implemented in software introduces a computational overhead that
slows down file operations. To estimate the extent to which RICE
affects performance we describe two sets of experiments.

Since the use of RICE only introduces an impact when a file is
being opened or closed, the first experiments consists of micro-
benchmarks that measure the cost it adds toopen()andclose()op-
erations. The cryptographic overhead is a function of the size of the
file that is being opened or closed. Hence, in the first experiment we
vary the file’s size and measure the time to open the file. This cost
is independent of whether the file was opened for reading, writing
or appending. The second, third and fourth experiments measure
the cost to close a file, as a function of its size, after it has been
opened for reading, writing or appending. The cost to close afile
after reading is minimal since no encryption, hash or delta compu-
tation is needed. In the case that the file is opened for writing, the
file is created with zero length and then filled so it reaches the ex-
pected size. The file opened for appending is already one which is



Figure 5: Cost of opening and closing a RICE protected file,
measured as a function of file size. The cost of closing depends
on whether the file was opened for reading, writing or append-
ing.

the expected size and no extra data is written to it. Thus in both the
write and append cases, the file that must be encrypted is the same
size, but the append case requires less computation for constructing
the delta which results in the operation being less expensive. The
results of these experiments are displayed in Figure 5.

The micro-benchmarks show that the impact of RICE on opening
and closing a file is significant. However, these operations consti-
tute only a fraction of the cost of a typical workload. Therefore, we
ran the SPECjvm98 [12] suite of applications to obtain a macro-
benchmark which would provide an estimate of RICE’s impact in
context.

The SPECjvm98 suite includes a separate file for each application
which contains output results that are used to check that thepro-
gram ran correctly. RICE protection is added to these files. In
addition, all but one of the programs use one or more datasetsthat
are stored in files. These files are protected with RICE as well. The
files vary in size from55 bytes to3.5 megabytes. The result of a
single run is shown in Figure 6.

compressis a Lempel-Ziv compressor. It is the worst affected in
terms of absolute cost since it accesses the largest file in the work-
load. db performs a series of add, delete, find and sort operations
on a memory resident database. It is worst affected in percentage
terms, since it uses multiple small files, with the result that the key
management overhead is pronounced.

checkexercises the virtual machine’s core functionality such as
subclassing, array creation, branching, bit operations, arithmetic
operations. All the overhead introduced by RICE is from the cost
of opening the file against which the output is matched for correct-
ness.

jessis an expert system that solves puzzles using rules and a listof
facts. jack is a lexical parser.mtrt is a ray tracer.mpegaudiois an
MP3 decompressor. In each case, most of the overhead is from the

Figure 6: RICE imposes a noticeable impact on applications in
SPECjvm98 that rely heavily on the filesystem if limited to a
single run.

Figure 7: RICE’s overhead is noticeably diminished when
SPECjvm98 runs10 times, due to the benefits of caching.

Figure 8: When SPECjvm98 runs a100 times, the caching ben-
efits compensate for the initial and final cryptographic opera-
tions to the point where the impact of using RICE is no longer
significant.



capability management. In the case ofmtrt the overhead is greater
since it uses a significantly larger data set.

Since RICE is designed to take advantage of concurrent and re-
peated use of files, we undertook two more experiments where the
applications are allowed to repeat a number of times. This allows
us to see the benefit of RICE when the workload involves repeated
access to the same files, either from a single process or multiple
concurrent processes. The results of the experiment with10 runs
is shown in Figure 7. The cases where RICE’s overhead was most
pronounced, such asdb show a marked improvement. Cases like
mpegaudioare still dominated by key management since the data
is streamed once and there is little re-use. Finally, the results of
an experiment with100 runs is shown in Figure 8. The impact of
RICE is no longer significant in these results.

Thus, if the workload has enough reuse of the files, RICE is viable
as is. RICE uses Java implementations of cryptographic subrou-
tines. Native ones will offer a significant performance improve-
ment. The experiments were performed on a700 MHz processor,
while current generation ones run at speeds over3 GHz. Since the
bottleneck that increased the running time of the applications was
the CPU-intensive cryptographic operations, it is likely to reduce
significantly with the use of newer, faster CPUs. In addition, com-
modity processors will include dedicated hardware cryptographic
acceleration in the near future. This will address the issue.

8.3 Caveat
As with all automated systems, it is possible for an attackerto uti-
lize knowledge of the response behavior of the system to bypass
the protective measures. For example, in the case of intrusion re-
sponse engines which rely on anomaly detection, the attacker could
perform their invasive steps stealthily enough that they fall below
the threshold of what is considered intrusive. In such cases, RICE
would not be invoked and its protections would not be active when
the system’s security is subverted.

Of greater concern is the possibility that an attacker may utilize
the protection measures to launch denial-of-service attacks against
legitimate users of the system. The attacker could effect this by
attempting to learn the contents of the intrusion signaturedatabase,
then launching partial attacks that cause the system to invoke the
protective measures of RICE. This would cause the data to be made
inaccessible, an effective denial-of-service to running applications.
One method to guard against this is to use timers on the detection
signatures, so that attacker is forced to be relatively aggressive in
launching the attack, in which case an administrator is likely to be
alerted in time to intercede. Such protections, however, are beyond
the scope of this paper.

9. CONCLUSION
RICE provides a means to augment the Java Runtime Environment
to provide data security guarantees when invoked by an intrusion
detecor. Using RICE, precautionary measures can be added tome-
diate file access so that in the event of an attack, the confidentiality,
integrity and availablility of data can be maintained. By mapping
read and write capabilities to their cryptographic analogues of con-
fidentiality and integrity, and organizing key management appro-
priately, RICE allows access to the data to be limited rapidly by
deletion of cryptographic keys. File modifications result in deltas
that are replicated to a safe node, thereby guaranteeing availabil-
ity even after a penetration occurs. When the security of thedata
being protected with RICE is critical, the benefit of the assurances

will outweigh the performance impact (which can be ameliorated
using cryptographic hardware acceleration).
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