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ABSTRACT
We evaluate an asynchronous gossiping middleware for wire-
less users that propagates messages from any group member
to all the other group members. This propagation can ei-
ther be implemented through distributed mechanisms or can
be mediated through servers. Our analysis of asynchronous
mechanisms using wireless user availability traces from an
university, corporation and a hot spot federation shows that
the fundamental impediment to the system performance is
the wireless user availability patterns. We then investigate
the relative performance for several distributed as well as
server mediated approaches. We show that pull mechanisms
effectively randomizes the times when messages are propa-
gated and thus achieves better performance than push based
mechanisms. We then develop an adaptive approach that
customizes the propagation frequency using the last session
duration and show that this mechanism exhibits good per-
formance when the required propagation intervals are large.
We also show that for a given number of gossips, it is prefer-
able to propagate messages to all available nodes rather than
increasing the frequency while correspondingly reducing the
number of nodes to propagate messages. Our results allow
middleware developers to choose the appropriate propaga-
tion model to satisfy their application constraints.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Asynchronous
interaction

General Terms
Performance

1. INTRODUCTION
Our primary goal is to design a middleware that propa-

gates messages from any group member to the others. Such
a middleware can be used for update propagation by group
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collaboration systems; results from this paper drives the
propagation policies for the flockfs [4] collaboration system.

The performance of our system primarily depends on the
user availability patterns. Contemporary users are wireless
and operate from a variety of locations. Hence, we evaluate
the system using user availability traces from an university,
corporation and hotspot federation. Our earlier analysis of
these traces showed a trend towards smaller user session
lengths as well as longer durations between sessions with
observable node churn. These availability durations cannot
sustain synchronous propagation. Hence, we focus our at-
tention on asynchronous mechanisms.

Messages in asynchronous mechanisms can either be prop-
agated via a server or in a distributed fashion. We investi-
gate the performance of both these approaches. Messages in
each of these schemes can either be pushed from a member
to another member or pulled from another member. The
frequency of these push and pull operations affect the sys-
tem performance. Frequent operations can help the system
propagate messages quickly at the expense of more network
traffic. We investigate these parameters using availability
traces of contemporary wireless LAN users in an university,
corporation and a city-wide hotspot federation.

We report poor system performance regardless of any spe-
cific propagation policy. For small groups, server mediated
approaches achieve good performance although distributed
approaches were competitive for large groups. In general,
a pull based approach leverages the randomness of group
availability to achieve better performance than push based
schemes. We showed that the preceding session duration of
an user was sufficient to adapt the propagation frequency.
However, systems that required frequent message propaga-
tions did not benefit from history based prediction as much
as systems that propagated messages less frequently.

Next, Section 2 describes the system architecture. Section
3 describes the results of our analysis. Section 4 describes
related work with concluding remarks in Section 5.

2. SYSTEM ARCHITECTURE
We describe the propagation mechanisms, performance

metrics and the wireless availability traces used for our study.

2.1 Message propagation mechanisms
We describe two approaches, distributed and server medi-

ated for asynchronously propagating messages to the group.

2.1.1 Distributed approach
A distributed approach periodically propagates the mes-



t
0

U
1

U
2

U
3

t
7

t
10 t

11

t
9

t
12

t
13

t
5

t
6

t
3

t
4

t
1

t
2

t
8

Figure 1: Availability behavior of three users

sages to the subset of simultaneously online nodes using a
gossip operation. The time to perform each gossip operation
depends on the size of the message as well as on the available
network bandwidth. Given the bandwidth availability on
wireless LANs, we do not model this duration ([5, 3]). Each
message is subsequently propagated to other nodes through
successive gossips in order to eventually reach all the group
members. Some of these gossip sessions are unnecessary be-
cause the corresponding pair of nodes already have all the
messages available with each other. The message can either
be pushed to other nodes or pulled from other nodes. We re-
fer to these policies as P2P-push and P2P-pull, respectively.
When a node comes online, it always initiates a push or pull
operation with other simultaneously available nodes. How-
ever, we assume that nodes go offline spontaneously with-
out explicitly pushing its contents to other nodes. Frequent
propagation improves system performance while incurring
many unnecessary gossips.

2.1.2 Server mediated approach
This method uses an always available server for propaga-

tion. This mediation can either be initiated by the node or
the server. In server initiated mechanisms, the server peri-
odically pulls messages from nodes that are online and then
pushes them to other online nodes. We refer to this policy as
Svr-ServInit. On the other hand, in a node initiated policy,
a node that creates a message periodically pushes them to
the server while also retrieving messages from other nodes
from the server. We refer to this policy as Svr-NodeInit.

2.2 Performance metrics
Next, we describe our metrics to measure the entropy as

well as the network overhead.

2.2.1 Entropy using lagAmount
We measure the system entropy using lagAmount, a met-

ric that quantifies the average amount of messages that are
unavailable at a node. We assume that nodes create mes-
sages at a constant rate and quantify the amount of mes-
sages created by measuring the amount of time that a node
was available. Consider a group of three nodes (U1, U2

and U3) and their availability durations (Figure 1). Mo-
mentarily ignoring U3, at t5, U2 does not have messages
(t1 . . . t2) and (t3 . . . t4) from U1. At t5, the lagAmount

at U2 is (t2 − t1) + (t4 − t3) with an average lagAmount

of (t2−t1)+(t4−t3)+(t6−t5)
2

. The lagAmount depends on the
propagation policies (explored in §3.2). For example, U3

could help in ferrying messages between U1 and U2.

Note that the number of node pairs is O(n2) on the group
size, the lagAmount depends on the group size (O(n)). For
distributed scenarios, the lagAmount also depends on the
amount of time that pairs of nodes overlap.

2.2.2 Network overhead using number of gossips
Our system uses pair-wise gossips to propagate the mes-

sages; numGossips measures the number of anti-entropy op-
erations. If a particular gossip only received messages from
the corresponding node (without propagating messages from
other peers), we consider the count of those as wasted gossips
(numWGossips). Note that these metrics do not account for
the amount of messages (say in kilobytes) that were actu-
ally propagated during a successful gossip operation; this
assumption is reasonable [5, 3].

2.3 Wireless availability traces
We required user availability traces to analyze the mes-

sage propagation. Our group members were wireless and
mobile. Hence, we used availability traces from a variety
of locations. We used traces collected at IBM Research [2]

from 7/22/2002 through 8/17/2002, at the île Sans Fil [10],
a free city-wide hotspot federation from 8/28/2004 through
8/28/2007 as well as application level wireless user availabil-
ity traces collected at Notre Dame (both on campus and the
dormitories) from 12/3/2007 through 8/25/2008. We refer
to these traces as corporate, hotspot and university, respec-
tively. For our analysis, we focused on the two weeks of
8/1/2007 to 8/15/2007 in the hotspot trace (most recent),
two weeks starting from 7/22/2002 in the corporate trace
(typical) and in the two weeks starting at 12/04/2007 in the
university trace (end of semester and hence busiest). Dur-
ing the trace duration, we observed 1,366, 2,724 and 2,729
unique users in corporate, hotspot and university traces, re-
spectively. An in-depth analysis of these and other traces
over longer durations are reported elsewhere. Our analysis
showed that median user session durations in the corporate,
hotspot and university were 2.8 hours, 35 minutes and 20
minutes, respectively. The median duration between ses-
sions were 3.5 hours, 9.6 hours and 1.78 hours, respectively.
We also observed node churn in all scenarios.

3. RESULTS
We use the traces described in § 2.3. We randomly created

group sizes of three, fifteen and thirty and investigate the
effects of the propagation frequency using the entropy and
gossip metrics outlined in § 2.2. Three is the smallest mean-
ingful group size for asynchronous propagation. We repeat
the simulations for fifty different groups. Our experiments
answered questions such as:

1. Gossips are considered to not be suited for quick dis-
semination [5, 3]. What is the best-case propagation
behavior for wireless users?

2. Are push and pull mechanisms complementary?

3. What are the tradeoffs for more frequently propagating
messages to fewer nodes?

3.1 Fundamental limitation for wireless users
First, we analyze the best performance achievable for wire-

less users. The best performance is achieved in a Svr-ServInit

scenario where the propagation frequency is zero seconds.
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Figure 2: Best performance achievable

Still, messages cannot be sent to nodes that are not online;
the best performance is dependent on the user availability
behavior. Also, this policy is not practical because it will
incur tremendous network overhead for constantly pulling
messages. Practical systems delay this operation and prop-
agate the messages in less frequent intervals; we investigate
these durations in Section 3.2.

We plot the lagAmount for groups of size three and fifteen
in Figure 2. Groups of size fifty were similar in behavior to
groups of size fifteen. We note that the lagAmount was high
and depends on the group size and node session duration.
The lagAmount also accumulates because of node churn;
when a node leaves the system, we continue to compute
its entropy for messages created by other nodes. We note
that the lagAmount is high for the corporate trace; as high
as two days worth of messages by the end of the trace. The
session durations for the hotspot and university traces were
smaller (§2.3), producing smaller lagAmounts. Unless efforts
to improve the wireless user availability are successful, it is
not possible to use asynchronous message propagation for
applications that require speedier performance.

3.2 Practical propagation policies
Next, we investigate the system using realistic propaga-

tion intervals. Nodes propagate messages when they come
online with subsequent propagations at regular intervals.
Frequent propagation can reduce the system entropy while
increasing the number of unnecessary gossips. The propa-
gation frequency is primarily driven by the application that
will use the middleware. The propagation frequency also de-
pends on the user availability patterns. For example, if the
node becomes unavailable before subsequent message prop-
agation, then the messages created during this session will
be delayed, increasing the system entropy.

Nodes are assumed to spontaneously go offline; it is im-
practical to require that nodes propagate their messages be-
fore going offline. Hence, we investigate whether we can

predict the times when a node will go offline and correspond-
ingly adapt the propagation frequency. We investigate his-
tory based approaches that use the past session durations to
predict the next session duration. We used history depths
of one, two and three. For each of these values, we choose
base frequencies of five min., fifteen min., thirty min. or an
hour. For each base frequency, if the predicted session du-
ration was less than the predicted duration, we reduce the
propagation frequency to the predicted value. We tabulate
the cumulative percentage of times when a node goes offline
before subsequent message propagation for our traces in Ta-
ble 1. The table is read as follows: for the university trace,
using a base frequency of an hour, 90.09% of the time, the
node will go offline before subsequent propagation. Given
the average session duration of 20 mins. (§2.3), most of these
messages were delayed until the node came back online; av-
erage time between sessions was 1.78 hours for this trace
(§2.3). The lagAmount values are reduced when the times

when no further messages were propagated was low; using
the last session duration can reduce this value to 48.86%.

From Table 1, we note that the percentage of time when
nodes did not subsequently propagate messages was higher
for the university than in other traces. The best perfor-
mance was achieved when the base propagation frequency
was high; this observation needs to be reconciled with the
number of unnecessary gossips. An adaptive policy that
used the recent session duration was effective. Hence, we
use the past session duration to predict the current session.
We investigate our propagation policies using the adaptive
as well as application specified propagation durations.

We report the extra overhead imposed by a particular
policy as compared to the best policy (evaluated in § 3.1).
For example, if the lagAmount on a particular day for the
P2P-pull policy was four while the corresponding values for
the best policy was three, we report a relative lagAmount of
one day. Analyzing the relative costs has the added benefit
of eliminating the lagAmounts accumulated for not propa-
gating messages to nodes that had already left the system.
However, messages which were created on the node that will
leave the system and that was not propagated to other nodes
will still affect the relative costs. Ideally, we prefer a policy
that minimizes the relative performance. In the interest of
space, we only plot a few representative values.

3.2.1 P2P-pull
We investigate the performance penalty introduced by the

P2P-pull policy as compared to the best policy (§3.1) and
plot the relative lagAmount, the number of gossips and un-
necessary gossips in Figure 3. As nodes come online, they
pull messages from other group members that are also on-
line. Subsequently, they pull messages at frequent intervals
that are either fixed or adaptive (§3.2). The times that nodes
come online are random. Hence the pull operations to prop-
agate messages created at any node to other nodes is also
random. Note that the adaptive duration allows the local
node to pull messages from other nodes before going offline;
it does not affect when the local messages are sent to other
nodes. Note that adaptive policies only made significant
improvements in the university scenario.

First consider the relative lagAmount (Figure 3(a)); rel-
ative lagAmounts continue to increase because of the resid-
ual messages left in a node that were not pulled by other
nodes before it left the system; the best policy (§3.1) would



trace
base freq = 5 min base freq = 15 min base freq = 30 min base freq = 60 min

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

corporate 1.47 1.30 1.39 1.39 10.06 8.87 9.65 9.71 17.45 14.64 15.99 16.31 28.48 22.26 24.69 25.19

hotspot 2.52 2.36 2.49 2.53 20.06 16.68 17.41 17.24 38.84 28.73 30.18 30.10 60.63 39.39 41.36 41.06

university 18.88 15.68 17.33 17.84 39.98 30.09 33.86 35.46 63.38 41.58 47.08 49.21 90.09 48.86 52.44 53.74

Table 1: Cumulative percentage of times when node went offline before subsequent message propagation
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Figure 3: P2P-pull (adaptive duration by default)

have propagated these messages. This effect was pronounced
in the hotspot scenarios. For a group of size fifteen in the
hotspot scenario with an adaptive policy, base frequency of
one hour and history depth of one, the relative lagAmount on
the fifteenth day was over 1.2 days; i.e., each pair of nodes
did not have about 1.2

14
= 0.086 days worth of messages.

These values were slightly bigger for smaller groups which
had fewer opportunities for message propagation (pairwise
lagAmount of 0.2

2
= 0.1). The adaptive policy for the uni-

versity scenario showed an residual relative lagAmount of
0.7 days vs 0.88 days for a non-adaptive policy.

Investigating the number of gossips and the number of
unnecessary gossips in Figures 3(b) and 3(c), respectively,
we note the high number of gossips as well as unnecessary
gossips in the corporate setting. For other scenarios which
exhibit poorer user availability, the number of gossips were
low; about ten for groups of size 15. As we show in subse-
quent sections, these parameters are competitive with server
mediated approaches.

3.2.2 P2P-push
Next, we investigate the behavior of the P2P-push policy

and plot the results of our analysis in Figure 4. The system
performance is far more sensitive to the propagation rate of
the local node. An adaptive policy in this scenario is likely
to push its messages to another node before going offline.
Hence, the adaptive policy has a more positive effect than
when using P2P-pull mechanisms. On the other hand, any
local message that was not pushed by the source to other
nodes will not propagate to any other nodes; increasing the
overall entropy. Note that in the case of P2P-pull, it is the
responsibility of other nodes to pull local messages. For a
group of size 15, there are 14 other nodes which are attempt-
ing to perform this propagation vs 1 for the P2P-push policy.
Overall, the system performance is slightly worse than the
performance of the P2P-pull policy. An adaptive policy for
the university setting for a group of size 15 with base prop-
agation frequency of one hour experiences a lagAmount of
0.75 days (as compared to 0.7 days for the P2P-pull policy).
Hence, the P2P-pull is preferable to the P2P-push policy.
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Figure 5: Svr-ServInit

3.2.3 Svr-ServInit
Next, we investigate the relative performance of server as-

sisted approaches. We plot the relative lagAmount and the
number of gossips in Figure 5. Note that the server can-
not adapt to the session durations of individual nodes; if a
particular node came online and went offline between the
propagation duration, then its messages are not propagated
to other nodes even though the server is continuously avail-
able. Also, all the gossips in this scenario are useful. Each
gossip is comprised of two operations; a pull of messages
from a particular node and a push of these to other nodes.

From Figure 5(a), we observe that the lagAmount progres-
sively increases with time. Even if the server was continu-
ously available, it is possible for a node to come online and
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Figure 4: P2P-push (adaptive duration by default)
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Figure 6: Svr-NodeInit

go offline without propagating its messages to other nodes
(especially if the session duration was below the propagation
rate). For small group sizes, the Svr-ServInit policy exhibits
better performance than distributed approaches. For exam-
ple, for groups of size three in an university with base propa-
gation every hour, the adaptive P2P-pull policy experienced
a relative lagAmount of 0.3 days at the end of the 15th day.
However, the Svr-ServInit policy for similar settings experi-
enced a lagAmount of 0.15 days. However, the distributed
approaches are more competitive for larger groups. For the
Svr-ServInit policy in the university scenario with a group
size of 15 and a propagation frequency of an hour, the rela-
tive lagAmount is about a day. The corresponding values for
an adaptive P2P-pull was only 0.7 days. The improvements
were even more pronounced for groups of size 50. Since the
distributed approaches allow any nodes to initiate the prop-
agation operation, P2P schemes achieve good randomization
of message propagation and better system performance.

3.2.4 Svr-NodeInit
Finally, Figure 6 investigates the performance of the Svr-

NodeInit policy. This policy is similar to the P2P-push pol-
icy; nodes periodically send its messages to the server while
downloading new messages from other nodes. Thus, this
policy leverages the availability of server nodes and propa-
gates its messages quickly. Figure 6(a) shows that even after
fifteen days, the lagAmount was a modest 0.2 days (can be
as high as 1.2 days for the other propagation mechanisms).

3.3 Peer selection mechanisms
Increasing the propagation rate reduces lagAmount but

requires more gossips. Next, we investigate a tradeoff that
chooses higher propagation rates while reducing the number
of nodes (among online nodes) to propagate messages.

We plot the relative performance for varying the number
of nodes for propagation using the non-adaptive P2P-pull

policy for groups of size 15 in Figure 7. We reduce the per-
centage of online users from 100% to 50% and 25% while in-
creasing the propagation rates from 60 min. to 30 min. and
15 min. For the corporate trace, we observe that choosing
fewer nodes has relatively minor effect on the lagAmounts.
At the end of fifteen days, the lagAmount was about 0.1
days for propagating to 100% as well as 50% of the nodes
(doubling the propagation rates). Propagating to 25% of
the nodes (quadrupling the propagation rate) increased the
lagAmount to 0.15 days. The corresponding reduction in un-
necessary gossips was from 24 to 16 and 14, respectively. For
the hotspot trace, reducing the frequency increased the lag-

Amount from 1.3 days to 1.5 days with small differences in
the number of unnecessary gossips. However, for the univer-

sity trace, reducing the percentage of online nodes to prop-
agate messages from 100% to 50% and 25% (while exponen-
tially increasing the propagation rates) drastically worsened
the lagAmount from about 0.8 days to 1.3 days and 1.6 days,
respectively. The number of unnecessary gossips showed a
small improvement.

A similar analysis for groups of size fifty (not illustrated
for lack of space) showed worsening performance for both
the hotspot and the university trace. For the hotspot traces,
the lagAmounts increased from 2 days to 2.6 and 3.2 days,
respectively. For the university traces, the lagAmounts in-
creased from 0.6 days to 1.2 and 1.55 days, respectively.
The number of unnecessary gossips also worsened for the
corporate trace; from 50 gossips to 225 and 125 gossips, re-
spectively. For scenarios which exhibit poorer availability,
reducing the percentage of nodes while increasing the mes-
sage propagation rate is not a viable option; any middleware
should propagate messages to all the nodes that are online.
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Figure 7: Tradeoff between propagation frequency and choosing fewer online nodes (group size: 15, P2P-pull)

4. RELATED WORK
Birman et al. [3] surveyed recent developments on the

strengths and limitations of gossip protocols. They showed
that gossip based protocols are not designed to expeditiously
propagate updates. We use empirical wireless availability
data to study the impact of the propagation parameters.

Vahdat et al. [11] used epidemic routing to propagate up-
dates in an ad hoc networking scenario. They simulated a
random node mobility pattern and analyzed the propagation
behavior by varying the radio range. Jain et al. [6] investi-
gated the routing behavior in a DTN. They used simulations
and progressively increased the amounts of network topol-
ogy information available to the routing mechanism. We
validate propagation rates using empirical node availability
behavior rather than by using simulated behavior.

Bakhshi et al. [1] surveyed formal analysis techniques for
gossiping protocols. Our evaluation metrics were influenced
by a consistency count metric described by Kuenning et al.
[8]. Jelasity et al. [7] addressed the problem of selecting
peers for gossiping. Similarly, Kwiatkowska et al. [9] evalu-
ated gossip protocols using probabilistic model checking. In
contrast to simulation based studies, this technique provides
both an exhaustive search of all possible behaviors of the
system, including best and worst-case scenarios and exact
quantitative results. Their work is concerned with identify-
ing the set of gossip peers; each node maintains a relatively
small local membership table providing a partial view of the
network. Using wireless users availability patterns, we show
that the system should gossip with all the available peers to
achieve good performance.

5. DISCUSSION
We analyzed the behavior of asynchronous message de-

livery mechanisms using empirical access traces of wireless
users from a variety of locales. We developed a metric to
measure the entropy of our system. We investigated the
performance bounds of a best policy that instantaneously
propagated the messages created at any user to other users.
We show that factors such as node availability and node
churn play an important role in the system performance.
We then compared the performance of several practical dis-
tributed as well as server mediated approaches with this
policy. We showed that Svr-NodeInit policy achieved the
best performance with the P2P-pull policy exhibiting com-
petitive performance. Overall, distributed policies are com-
petitive, especially for larger groups.
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